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Among recent proposals for next-generation non-charge-based logic is the notion that a single electron can
be trapped and its spin can be manipulated through the application of gate potentials. In this paper, we present
numerical simulations of such spins in single-electron devices for realistic �asymmetric� confining potentials in
two-dimensional electrostatically confined quantum dots. Using analytical and numerical techniques we show
that breaking the in-plane rotational symmetry of the confining potential leads to a significant effect on the
tunability of the g factor with applied gate potentials. In particular, anisotropy extends the range of tunability
to larger quantum dots.
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I. INTRODUCTION

The notion of using single-electron spins for quantum
computing and next-generation logic is an attractive idea that
has received considerable attention in recent years.1–13 In or-
der to integrate new concepts with existing semiconductor
technology, a number of researchers have recently explored
the possibility of using electric fields generated by imposed
gate potentials to manipulate single-electron spins in
quantum dot devices.14–34

The goal of the present work is to utilize state-of-the-art
numerical techniques to explore the fundamental physics of
single-electron spin devices and to provide realistic informa-
tion for the practical design of such systems. We utilize a
finite-element based numerical technique to study electro-
statically defined quantum dots that is similar to other
recently published work.35

A key result of the present work is the discovery that
spatial symmetry breaking36–38 resulting from the anisotropy
of realistic confining potentials results in an enhancement of
the electric-field tunability of the electron g factor over that
found for symmetric potentials for dots larger than roughly
65 nm.

Indeed, symmetry plays a key role in spin-orbit interac-
tions in systems such as the one considered in this work. The
Dresselhaus39 and Bychkov and Rashba40 coupling terms
�discussed in detail below� are manifestations of the spin-
orbit interaction arising due to bulk inversion asymmetry and
the quantum well confining potential asymmetry, respec-
tively. The forms of these interactions, given in Eqs.
�18�–�20�, are well established and have been used in many
studies.14–37

It is also generally understood that the Zeeman splitting
depends on the direction of an applied field and is thus de-
scribed by a g-factor tensor.19,38,41–43 Some authors have also
explored the effects of asymmetry of the quantum dot con-
fining potential in coupled quantum dot systems.36,44–46 A
subject that seems to have received little attention is the
question of anisotropy effects in a single dot and is the sub-
ject of the present investigation.

Our approach is most closely related to that of Ref. 14 but
differs in that we take a numerical approach based on the

finite element method47 whereas the authors of Ref. 14 use
perturbation-theory and direct diagonalization techniques
and did not consider anisotropy effects. Another recent work,
similar to ours, employing real-space numerical �finite-
difference� methods has also appeared.35 This work was con-
cerned with the determination of realistic self-consistent po-
tentials, electron-electron interaction effects, and interaction
with quantum point contacts. We now turn to a discussion of
our computation method.

II. COMPUTATIONAL METHOD

We utilize a multiscale multiphysics simulation strategy
based on the finite element method47 to provide a realistic
description of the physics of single-spin devices in three-
dimensional geometries. The ideal is to solve self-
consistently the Maxwell equations of electrostatics with the
Schrödinger equation in three-dimensional geometry. Unfor-
tunately such a solution is not feasible given currently avail-
able techniques due to the disparity of length scales in the
problem. We thus seek an approximate solution that is built
up in stages.

FIG. 1. �Color online� Electrostatic potential for a prototype
single-electron device plotted in the 2DEG layer. This figure illus-
trates a single-spin device consisting of two triangular gates above a
2DEG. The gates were held at 1V and the 2DEG was held at 0V.
For simplicity of the electrostatic calculation, the 2DEG was treated
as a classical perfect conductor. The dimensions of the device in the
x and y directions are 2.8 and 1.8 �m, respectively, and the thick-
ness is 1 �m.
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In the first step of our approach, we construct a three-
dimensional model of the device and calculate the gate-
induced electrostatic potentials that cause the formation of a
quantum dot in the two-dimensional electron gas �2DEG� at
a AlGaAs/GaAs heterojunction as illustrated in Figs. 1–3.
This geometry corresponds to prototype devices that are un-
der consideration by experimentalists at the University at
Albany, State University of New York.

In order to obtain the electrostatic solution for the confin-
ing potential, we approximate the 2DEG as a classical per-
fect conductor and give it a finite width. The width
��0.05 �m� is unrealistically large from a quantum per-
spective but is assumed to give a reasonable description of
the spatial variation of the potential in the layer of the 2DEG.
In a subsequent step we treat the 2DEG from a realistic
quantum-mechanical perspective.48

Figures 2 and 3 are one-dimensional plots obtained from
Fig. 1 by plotting the potential along a line in the 2DEG
along high-symmetry directions. These one-dimensional po-
tentials are then fit to polynomial forms Px�x� and Py�y�.
These are then used as a potential of the form

Vreal�x,y� � Px�x� + Py�y� �1�

to approximate the confining potential of the electron in the
Schrödinger equation. Before considering electron motion in
the above potential, Vreal, we consider the simpler quadratic
potential

Vquad �
1

2
m�o

2��x2 + �y2� �2�

that allows for systematic studies. For convenience we have
written the strength of the potential in harmonic-oscillator
form by defining the prefactor 1

2m�o
2. The potential of Eq. �2�

is a paraboloid of revolution and is commonly employed in
model studies of two-dimensional �2D� quantum dots.49 The
separable form given in Eq. �1� is a generalization of Eq. �2�
from quadratic to polynomial form and is an ansatz. It is
assumed to give a good description of the system and the
results of Figs. 6 and 11 support this hypothesis.

In the second step we calculate the wave functions and
self-consistent potential at the heterojunction between Al-
GaAs and GaAs that describes the formation of the two-
dimensional electron gas as illustrated in Fig. 4. We do this
calculation primarily to benchmark our numerical method by
making contact with a well-known result from the
literature.48

The results of Fig. 4 are obtained by solving the following
coupled equations that constitute the self-consistent
Schrödinger-Poisson equations including exchange-
correlation effects �see Eq. �5�, and references that follow it�:

− �2

2

d

dz
� 1

m�z�
d�i�z�

dz
� + V�z��i�z� = Ei�i�z� , �3�

d

dz
��o��z�

d	�z�
dz

� = e	
i

ni
�i�z�
2 − 
�z� , �4�

where ��z� and 
�z� are the fixed spatially dependent dielec-
tric function and background charge density of the interface

FIG. 2. �Color online� Electrostatic confining potential in the
2DEG along the symmetry axis of a prototype single-electron de-
vice. This figure was made by plotting the potential of Fig. 1 along
a line in the 2DEG through the symmetry axis of the device �the x
axis of Fig. 1, i.e., a line running from one gate to the other� inter-
secting with the central region.

FIG. 3. �Color online� Electrostatic confining potential in the
2DEG normal to the symmetry axis of a prototype single-electron
device. This figure was made by plotting the potential of Fig. 1
along a line in the 2DEG normal to the symmetry axis of the device
�the y axis of Fig. 1� and intersecting the central region.

FIG. 4. Heterojunction self-consistent potential �upper panel�
and lowest two wave functions �lower panel� of the 2DEG. These
results demonstrate consistency of our results with other published
work �Ref. 48�.
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as described in Ref. 48. The potential energy of the 2DEG is
given by

V�z� = − e	�z� + Vxc�z� , �5�

where 	�z� is the self-consistent potential and Vxc�z� is the
well-known Hedin and Lundqvist parametrization of the
exchange-correlation potential given in Ref. 50 and repro-
duced as Eqs. �8�–�10� of Ref. 48. In the above equations, the
coordinate z is measured relative to the interface between
AlGaAs and GaAs. The results of Fig. 4 are in excellent
agreement with previous results48 confirming the soundness
of our approach.

We next consider the formation of an electrostatically de-
fined quantum dot by applying a symmetric, confining poten-
tial in the plane of the 2DEG as illustrated in Fig. 5. In other
words, we add a potential of the form

Vx�x� =
1

2
m�o

2x2 �6�

to Eq. �5� and solve the system of Eqs. �3�–�5� self-
consistently in the two-dimensional x-z domain. Figure 5

clearly illustrates the formation of a quantum dot in the po-
tential well of the 2DEG as expected.

In the remainder of this paper we focus our attention on
motion in the plane of the 2DEG and contrast effects asso-
ciated with quantum dots in symmetric and asymmetric con-
fining potentials as illustrated in Figs. 6�a� and 6�b�, respec-
tively. These figures were obtained using the quadratic model
potential of Eq. �2� with �=�=1 for the symmetric case
�Fig. 6�a�� and �=1 and �=2.8 for the asymmetric case �Fig.
6�b��, in the Hamiltonian, Hxy, describing motion in the two-
dimensional plane of the 2DEG �i.e., x-y plane�, to be dis-
cussed in the following. The quantum dot radius defined by

�o �� �

m�o
�7�

was chosen to have the value �o=30 nm.
The parameters of the asymmetric potential were chosen

so as to mimic the realistic potential of Figs. 2 and 3. In other
words, we obtain xo and yo as the solutions to the following
equations:

�o = Px�xo� �8�

and

�o = Py�yo� , �9�

where �o is the ground-state eigenvalue in the realistic po-
tential of Eq. �1�. We then fix the three parameters �, �, and
�o as follows. As there are three parameters and two equa-
tions, we can choose one at will. We therefore take �=1
throughout the rest of this paper. The ratio of � to � is then
determined by taking the ratio of the following equations:

�o =
1

2
m�o

2�xo
2 �10�

and

FIG. 5. �Color online� Quantum dot wave function plotted in the
x-z plane formed by applying a quadratic confining potential in the
plane �i.e., along the x axis�. This potential is characterized by the
parameter �o=20 nm �quantum dot radius, see Eq. �7��.

FIG. 6. �Color online� In-plane wave function for quantum dots formed by three potentials: �a� the symmetric quadratic model of Eq. �2�
with �=�=1 and �o=30 nm �see Eq. �7��; �b� the asymmetric quadratic model of Eq. �2� with �=1, �=2.8, and �o=30 nm; and �c� the
realistic potential of Eq. �1� and Figs. 2 and 3.
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�o =
1

2
m�o

2�yo
2, �11�

to give �=xo
2 /yo

2. Lastly we choose �o as determined by the
coefficient of the quadratic term in Py�y� �plotted in Fig. 3�
�the polynomial Px�x� has no quadratic term�. The resulting
values are �=2.8 and the value of �o is most conveniently
expressed equivalently by �o�30 nm. The wave function in
the asymmetric model potential of Fig. 6�b� should be con-
trasted with the wave function in the realistic potential �i.e.,
using the form of Eq. �1�� as shown in Fig. 6�c� as will be
discussed further in the remainder of this paper.

We consider the motion of the electron in the x-y plane of
the quantum dot in the presence of a magnetic field oriented
perpendicular to the plane of the 2DEG. Our approach
closely follows that of Ref. 14. Thus the total Hamiltonian
can be written as

H = Hxy + Hz + Hso, �12�

where Hz corresponds to motion normal to the interface �as
discussed in the context of Eqs. �3�–�5��, Hso is the spin-orbit
interaction to be discussed shortly, and the remaining term is
given by

Hxy =
P� 2

2m
+

1

2
m�o

2��x2 + �y2� +
1

2
go�B�zB , �13�

where the kinetic momentum operator

P� � p� +
e

c
A� �14�

is the sum of the canonical momentum

p� � − i���x,�y,0� �15�

and the vector potential �in the symmetric gauge�

A� �
B

2
�− y,x,0� . �16�

The eigenstates of Hxy �Eq. �13�� with �=� are the well-
known Fock-Darwin states.51,52 The situation with ��� also
has an analytic solution.49 We have verified that our numeri-
cal solution of Hxy
��=�
�� is consistent with these analyti-
cal results.

Lastly we consider the spin-orbit interaction as embodied
in the Hamiltonian Hso which is the essential ingredient in
the phenomena of electric-field-induced spin switching.6,14

We write

Hso = HR + HD1 + HD2, �17�

where the Rashba interaction40,53 is given by

HR =
�ReE

�
��xPy − �yPx� �18�

and the linear and cubic Dresselhaus interactions39,54 are
written as

HD1 =
0.7794�ck

2

�
�− �xPx + �yPy� , �19�

which is linear in components of the momentum operator P�

and

HD2 =
�c

�3 �− �xPxPy
2 − �yPyPx

2� + H.c., �20�

which is cubic in components of the momentum operator
�H.c. denotes the Hermitian conjugate�.14 Note that the
electric-field strength E that enters Eq. �18� is that associated
with the heterojunction 
E
=�V�z� /�z and is treated as an
adjustable parameter. Physically we can implement changes
in E through the application of appropriate gate potentials.
All numerical parameters in the above pieces of Hso are those
for GaAs found in Ref. 14

The eigenvalue equation H
��=�
��, with H given by
Eqs. �12�–�20�, was solved numerically to obtain the lowest
few eigenvalues and eigenstates vs the various parameters of
the system. These parameters include the magnetic-field
strength B, the electric field E, and the strength of the quan-
tum dot confinement potential as specified by the quantum
dot radius �o �Eq. �7��.

The notion of electric-field-induced spin switching is
quantified by defining an effective electron g factor by the
following definition:

� =
1

2
g�B�zB �21�

to describe the energy difference between the lowest energy
up- and down-spin states. Thus we consider the lowest two
states �including spin� �2 and �1 and calculate the effective g
factor as

g =
��2 − �1�

�BB
. �22�

Results for the variation of this effective g factor as a func-
tion of the parameters E, B, and �o are presented in Sec. III.

III. RESULTS

We now turn to a presentation of the key results of this
work: the tunability of the electron g factor through the ap-
plication of electric and magnetic fields. Figure 7 is consis-
tent with previous published work14 and illustrates the
g-factor tunability vs the strength of the applied electric field
and confining potential �as parametrized by the quantum dot
radius �o� for fixed magnetic field �B=1T� for the symmetric
quantum dot in the quadratic potential of Eq. �2� with �=�
=1. We express g relative to its nonrelativistic free-electron
value go=2. Figure 8 is also consistent with previous pub-
lished work14 and illustrates the g-factor tunability vs the
strength of the applied electric field and magnetic field for
fixed confining potential �parametrized by the quantum dot
radius �o=20 nm�.

Upon introducing in-plane anisotropy to the confining po-
tential we find significant changes in the electric-field in-
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duced g-factor tunability for dots larger than roughly 65 nm
as illustrated in Fig. 9. This figure was generated by choosing
�=1 and four values of �, given by �=20, 40, 60, and 80 in
Eq. �2�. By comparison of Fig. 9 to Fig. 7 we see that the
major effects of anisotropy are for dots roughly larger than
65 nm.

To quantify the effects of in-plane anisotropy, we have
carried out a parameter study of the g-factor tunability vs
degree of anisotropy and the results are presented in Fig. 10.
This figure was generated by fixing the quantum dot radius at
�o=120 nm and holding �=1 while varying � with B=1T.

Lastly we consider the results for g-factor tunability for
quantum dots in the realistic potential of Figs. 2 and 3 and
Eq. �1�. Figure 11 illustrates the results for a quantum dot in
the realistic potential in comparison to several model poten-
tials. The lowest curve, indicated by filled black squares,

represents the symmetric model of Eq. �2� with �=�=1 and
the other curves with filled symbols represent varying de-
grees of anisotropy as follows. The filled red �online� circles
represent �=2.8, while the filled green �online� upward
pointing triangles correspond to �=5 and the blue �online�
downward pointing triangles correspond to �=10. In each
case of the quadratic model we have chosen �o=30 nm. The
results for the realistic potential of Eq. �1� and Figs. 2 and 3
are represented by the open symbols. We see that results for
the realistic potential are well represented by the asymmetric

FIG. 10. �Color online� Electric-field-induced changes in the g
factor vs the degree of anisotropy of the quantum dot confinement
potential for various electric-field strengths. From top to bottom, the
curves represent increasing electric-field strength as follows. The
first curve corresponds to 1
104 V /cm, and the rest range from
1
105 through 1
106 V /cm in equal steps. This figure assumes
the quadratic model of Eq. �2� with �=1, �o=120 nm, and B=1T.
We express g relative to its nonrelativistic free-electron value go

=2.

FIG. 7. �Color online� Electric-field-induced changes in the g
factor vs quantum dot radius for various electric-field strengths for
a symmetric quantum dot in the quadratic potential of Eq. �2�. From
top to bottom, the curves represent increasing electric-field strength
as follows. The first curve corresponds to 1
104 V /cm and the
rest range from 1
105 through 1
106 V /cm in equal steps with
B=1T. This result is consistent with Ref. 14. The parameter g is
expressed relative to its nonrelativistic free-electron value go=2.

FIG. 8. �Color online� Electric-field-induced changes in the g
factor vs magnetic field for various electric-field strengths for the
symmetric quantum dot. From top to bottom, the curves represent
increasing electric-field strength as follows. The first curve corre-
sponds to 1
104 V /cm and the rest range from 1
105 through
1
106 V /cm in equal steps. For this calculation, the quantum dot
radius was fixed at �o=20 nm. We express g relative to its nonrel-
ativistic free-electron value go=2.

FIG. 9. �Color online� Electric-field induced changes in the g
factor vs quantum dot radius for various electric-field strengths for
an asymmetric quantum dot for the asymmetric model of Eq. �2�
with �=1 and �=20, 40, 60, and 80. In each panel, from top to
bottom, the curves represent increasing electric-field strength as fol-
lows. The first curve corresponds to 1
104 V /cm, and the rest
range from 1
105 through 1
106 V /cm in equal steps. Again we
choose B=1T. We express g relative to its nonrelativistic free-
electron value go=2.
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model of Eq. �2� with �=1, �=2.8, and �o=30 nm.
The good agreement between the asymmetric model po-

tential and the realistic potential in Fig. 11 is reflected visu-
ally in Figs. 6�b� and 6�c� although there are is a slight un-
derestimate of the magnitude of the wave function in Fig.
6�b� in comparison to Fig. 6�c�. Obviously, however, from
Fig. 11 this slight difference has little effect on the g-factor
tunability as evidenced by the close agreement between the
filled and open circles in Fig. 11. The quantum dots of Figs.
6�a� and 6�b� correspond to the filled squares and circles of
Fig. 11, respectively, emphasizing the importance of aniso-
tropy.

IV. CONCLUSION

We have carried out a numerical simulation study of gate-
induced tunability of the electron g factor in a prototype
single-electron spintronic device. We consider a realistic
three-dimensional geometry and employ a numerical ap-
proach based on the finite element method.47

The key result of this work is illustrated in Figs. 7 and
9–11: anisotropy in the confining potential significantly ex-
tends the size range of quantum dots that exhibit electric-
field-induced g-factor tunability. Indeed, in Fig. 7 we see that
all of the curves collapse onto a single curve for large quan-
tum dots �i.e., starting around �o=65 nm� negating the
switching effect. With anisotropy, however, the range of
switchability is shifted to larger dots.

Another result of this work is the realization that the de-
gree of anisotropy needs not be very large in order to obtain
significant changes in the gate-induced g-factor tunability, as
illustrated in Fig. 10. We see that the maximum effect is
obtained for dot in the range of � /��15−25 nm and begins
to decrease slightly for larger values of this shape-anisotropy
ratio. The jumps in the value of the g factor from positive to
negative value are indicative of level crossings �e.g., the rela-
tive ordering of spin-up and -down levels changes as a func-
tion of the anisotropy�.

Lastly we have seen from Fig. 11 that results for quantum
dots in realistic potentials can be well represented by the
anisotropic model of Eq. �2� with �=1, �=2.8, and �o
=30 nm. By employing nonperturbative fully numerical
methods and realistic geometries, our approach is providing
insights that might be difficult or impossible to obtain using
analytical techniques alone.
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